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The Number of Smallest Knots on the Cubic Lattice 

Y u a n a n  D i a o  ~ 

Received July 30, 1993: final September 14, 1993 

It has been shown that the smallest knots on the cubic lattice are all trefoils of 
length 24. In this paper, we show that the number of such unrooted knots on 
the cubic lattice is 3496. 

KEY WORDS: Knots; knotted polygons; cubic lattice; self-avoiding walks. 

1. THE M I N I M A L  PROJECTION OF P(24)  

The s tudy of polygons  on the cubic latt ice has led to fairly large amount  
of l i terature.  See Hammers ley  ~2~ and Kesten ~3) for the early work on this 
object. F o r  a complete  reference, see Madra s  and Slade. 14) Knot t ing  in 
polygons on the cubic lat t ice is an interesting mathemat ica l  p roblem in this 
area. ~5'71 In Diao ,  tll it is proved that  24 is the minimal  number  of steps 
needed for a po lygon  on the cubic latt ice to be knot ted.  In  this paper ,  we 
enumerate  all possible knot ted  polygons on the cubic latt ice with 24 steps. 

Th roughou t  this paper ,  a po lygon  always means a po lygon  on the 
cubic latt ice and P(n)  means a polygon of n steps. The project ion of P(24) 
onto a coord ina te  plane is a weighted graph on the square latt ice with the 
weight of each edge being the number  of steps projected onto it. A step is 
called an x step if it is paral lel  to the x axis, similarly for y and z steps. Let 
a, b, and  c be the number  of x, y, and  z steps in P(24),  then we have 
a + b + c = 24, hence the sum of the two smaller ones of a, b, and c will be 
at most  16. This number  is called the minimal  project ion number  and is 
denoted by m. The cor responding  project ion of P(24) onto a coordina te  
plane has total  weight =m~< 16. This project ion is called the minimal  
project ion of P(24) and is denoted  by G(m). Notice  that  m must  be even 
and the sum of weights of edges sharing a c o m m o n  vertex (called the 
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Fig. I. The square move and the rotation. 

degree of that vertex) is also even. We will assume that the xy plane is the 
minimal projection plane for convenience. 

A polygon is reducible if it is topologically equivalent to a shorter 
polygon. Two polygons are/-equivalent if they are topologically equivalent 
and have the same length. Since 24 is the minimal number of steps needed 
for a polygon to be knotted, any knotted P(24) is nonreducible. We will be 
looking at the minimal projections of P(24) and eliminate most of them. 
The number of cases we will need to study is large but manageable. It is 
actually quite small compare with the total number of P(24), which should 
be around 1011-1012. ~61 

A continuous sequence of steps of P(24) is called a path. A 1-path is 
a path such that its projection onto the xy plane contains only single edges. 
Let L be a 1-path of P(24) such that its projection is half of a unit square 
and that the vertex on the unit square not covered by L is not occupied by 
G(m) either. If L is replaced by a 1-path L' that has the same length and 
endpoints as that of L such that the projection of L' goes to the other half 
of the unit square, then the new polygon so obtained is/-equivalent to the 
previous one. Such a move is called a square move, as shown in Fig. la. 
Also, without changing the length and knot type of P(24), any path L of 
P(24) whose projection is an edge on G(m) with one end open I-call it a 
B( 1 )] can be replaced by a path L' that has the same length and endpoints 
as that of L such that its projection is a different B(1) provided that the 
open end vertex of this new B(l) is not occupied by G(m). Such a move is 
called a rotation, as shown in Fig. lb. 

Since a knotted P(24) is nonreducible, its G(m) cannot have the 
situations in Fig. 2, since they all give a reducible P(24). A marked number 
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Fig. 2. Impossible projections for a knotted P(24). 
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Fig. 3. Examples of reducible paths. 

indicates the weight of the corresponding edge, and a vertex connected to 
the rest of G(m) is marked  with a bigger dot. 

Figure 3 shows typical examples of Figs. 2a-2d and how they can be 
reduced. Figures 2e and 2f are either reducible or require too many  edges 
to be nonreducible. One can draw a few pictures to see this or refer to 
ref. 1. 

k e m m a  1. If P(24) is knotted,  then G(m) cannot  be a tree. Further-  
more, there exists a loop of G(m) which bounds every other loop of G(m) 
(if there is any). 

Lemma  1 is proved in ref. 1 for P(22). The proof  for P(24) is essen- 
tially the same with very little modification, so we refer for it to ref. 1. Let 
4(p) be the loop in G(m) defined in Lemma  1, where p is its length. If 
p >~ 14, G(m) is obviously reducible. There are 25 different shapes for A(12) 
(up to a rigid move),  which are listed in Fig. 4. 

The only one in Fig. 4 that can give a knot  projection is the one 
marked with a single asterisk (see Fig. 7c). Every other shape can be 
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Fig. 4. All possible A(12)'s. 
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Fig. 5. Cases from Fig. 4(**). 

eliminated, since the corresponding P(24) is reducible. This can be seefl by 
using Fig. 2 and the facts that there are at most four edges available to fill 
in the graph and a vertex must have an even degree. The only one not so 
obvious is the one marked with two asterisks, when the four edges form a 
square in the middle, as shown in Fig. 5a. For the four 1-paths similar to 
the one shown in Fig. 5a with arrows, one of the situations shown in 
Figs. 5b-5d must happen. Figure 5b is eliminated since it gives two 
polygons. Figure 5c contains a reducible pattern (Fig. 2b), so is eliminated. 
The indicated square move in Fig. 5d yields a G(m) like Fig. 7c. That 
means if there is a knotted P(24) with projection as in Fig. 5d, then it can 
be obtained from a knotted P(24) with the projection of Fig. 7c by a square 
move. But we will see later that no such square move can be made on any 
knot with projection of Fig. 7c (see Fig. 8c). 

Figure 6 gives all possible shapes of A(10) and A(8). 
Figures 6a and 6d-6f can be eliminated easily since there are always 

reducible path no matter how the other edges (at most 6, since p = 10 in 
these cases) are filled in. It is shown in ref. 1 that Fig. 6b requires at least 
26 steps for the corresponding polygon to be knotted. So Fig. 6b is 

i-) (b) (e) (d) (~) 

(g)' (h) (i) 

Fig. 6. All possible shapes of zl(8) and A(10). 
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eliminated. Figure 6g is discussed and eliminated in ref. 1 for m ~< 14. We 
leave it to the reader to verify that it can also be eliminated for m = 16. 
Figures 6c, 6h, and 6i are candidates for knot projections. 

/1(6) is a rectangle of width 1 and length 2. It is a candidate for knot 
projection./1(4) is a unit square and the other edges (if there are any) can 
only be attached to its corners as B(1 )'s. A single B(1) at a corner can 
create a bigger loop by a square move (may need a rotation first), which 
corresponds to p = 6. But as we will see later, any knotted P(24) with the 
projection of Fig. 7a has no such square move. So there are either two 
B(1)'s attached or no B(1)'s attached at each vertex of A(4). Again, to 
avoid a square move, the paths in these B(1)'s have to follow strict direc- 
tions, which results in either too many edges or two components.  So /1(4) 
is not a candidate. To summarize, there are five possible shapes left for/1. 
What is left is to decide how the other edges can be attached to these 
shapes to yield a knot  projection. We state the result in the following 
lemma, but leave the details to the reader to verify. 

(a) (b) (r (d) 

(e) (f) (g) 

(h) (i) (j) 

(k) 11) (m) 

Fig. 7. Minimal projections of knotted P(24). 



1252 Diao 

L e m m a  2. If P(24) is knotted, then G(m) can be transformed to 
one of the graphs given in Fig. 7 by a rigid motion (i.e., any combination 
of reflection, rotation, and translation). 

Remark. The numbers in Fig. 7 indicate the weights of the corre- 
sponding edges and the unmarked edges are all single edges. 

2. T H E  E N U M E R A T I O N  

Two polygons on the cubic lattice are regarded as the same if one can 
be translated to another by letting x~ = x + a, y~ = y + b, and z~ = z + c for 
certain integers a, b, and c. Otherwise they are said to be different. Such 
polygons are called unrooted polygons. Under this definition, the same 
(unrooted) polygons have the same minimal projection. 

In Figs. 7a and 7b, m = 14, hence there are three possibilities for the 
projection plane, since its other projections are graphs of total weight 
exceeding 14. Once the plane is fixed, there are eight different graphs that 
can be transformed to each of Figs. 7a and 7b by a rigid motion, since 
they are not symmetric about any axis. Thus, any P(24) with its minimal 
projection as Fig. 7a or Fig. 7b corresponds to 3 .8  = 24 different ones. If 
this P(24) is a trefoil, then its mirror image about the projection plane is 
different from itself, since a translation does not change the chirality. Yet 
this reflection does not change its projection. Therefore, such a trefoil P(24) 
corresponds to 48 different ones. 

In Figs. 7c-7m the total weight is m = 16. The projection of the corre- 
sponding P(24) to any coordinate plane will also be 16. So we assume that 
the projection plane is the xy plane. Each trefoil P(24) with a projection of 
Fig. 7c, 7d, or 7e corresponds to eight different ones (notice their symmetry 
property), yet each trefoil P(24) with a projection in one of Figs. 7f-7m 
corresponds to 16 different ones. 

Figure 8 gives 13 trefoil P(24)'s whose minimal projection graphs corre- 
spond to the ones given in Fig. 7, respectively. The direction of projection is 
the vertical direction. Their mirror images about the projection plane have 
been included in the possibilities discussed above. 

The dashed lines in the pictures hint at different ways to draw such a 
P(24) without changing its projection and its knot type. For example, 
Fig. 9 shows three different P(24) all with the projection of Fig. 7a One 
can get another three like the one marked with a dashed line. Since these 
two parts do not interfere with each other, they combine into 3 .3  = 9  
different ones. The other ones are all counted in a similar manner. The final 
count: nine ways each for Figs. 7a and 7b, 63 for Fig. 7c, 31 for Fig. 7d, 5 
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Fig. 8. The realization of knot projections. 

for Fig. 7e, 39 for Fig. 7f, 21 for Fig. 7g, 18 for Fig. 7h, 13 for Fig. 7i, a n d  
6 for each of Figs. 7j-7m. The t o t a l  number of knotted P(24)'s is 

4 8 - ( 9 + 9 ) + 8  .(63+31 +5)  

+ 16.(39+21 + 18+ 1 3 + 6 + 6 + 6 + 6 ) = 3 4 9 6  

1 / 
Fig. 9. Different knotted P(24) with the same projection, that of Fig. 7a. 
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Since the polygons are unrooted,  it follows that the number  of rooted 
polygons of 24 steps that are knotted is 24-3496 = 83,904. We conclude 
this paper by stating the above as the following theorem. 

T h e o r e m .  On the cubic lattice, there are 3496 unrooted polygons of 
24 steps that are knotted and 83,904 rooted polygons of 24 steps that are 
knotted. Furthermore,  they are all trefoils. 
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